

978-1-5386-6854-2/19/$31.00 ©2019 IEEE 1

Complex Project Scheduling Lessons Learned from NASA,
Boeing, General Dynamics and Others

Robert Richards
Stottler Henke Associates, Inc.

1650 S. Amphlett Blvd., Suite 300
San Mateo, CA 94402

Richard Stottler
Stottler Henke Associates, Inc.

1650 S. Amphlett Blvd., Suite 300
San Mateo, CA 94402

Abstract—The work presented in this paper describes lessons
learned from expert schedulers working on many of the world’s
most complex scheduling challenges and incorporating these
lessons into an intelligent scheduling software framework that
utilizes domain specific knowledge and reasoning. This
intelligent scheduling software framework, called Aurora,
originated in part from many earlier NASA-funded efforts and
has been utilized by NASA for some of its most complex
scheduling challenges, including the scheduling of the
maintenance, repair & overhaul (MRO) of the Space Shuttle
during its tenure. All of NASA has access to Aurora.

Aurora has also been applied to complex scheduling challenges
faced by Boeing, General Dynamics Electric Boat, the US Air
Force, Pfizer and others. Lessons learned from one domain /
implementation has greatly benefited future implementations.
For example, even though much of our early work was with
NASA, Stottler Henke continues to work with NASA and
leverage lessons from other implementations. For example, and
ongoing implementation is a solution called, Aurora-KSC, has
been designed, developed and deployed at KSC to automate a
large amount of Kennedy Space Center’s planning, scheduling,
and execution decision-making. This implementation leverages
the robust filtering and highlighting capability, developed and
improved via many earlier implementations, in addition to the
concept of the Hazard Constraint that has evolved from the non-
concurrent constraint developed earlier.

More specifically this paper will look at the following valuable
capabilities that are rare or non-existent in other project
management / scheduling tools that have proven invaluable to
solving many of the world’s most complex scheduling
challenges.
• Ability to capture human scheduler reasoning. That is,

when decisions / tradeoffs need to be made, use the
expertise of expert schedulers so that the scheduling system
reacts as a human expert wants it to.

• Ability to model human resources with details beyond just
an occupation, such as occupation plus a set of
specializations and/or certifications.

• Ability to handle less than perfect data sources, such as
having an override for the status of work-in-progress tasks,
so schedulers can easily override data from external
sources.

• Provide a convenient interface for visualizing what tasks
can be outsourced and providing a one-click option to
outsource a task that adjusts the actual model
appropriately.

• Provide an explanation capability that shows the rationale
for why every task is scheduled where it is, that is, each
task includes the reasons why it is scheduled at its current
time.

• Provide a robust filtering and highlighting capability, so
users can visualize the criteria of interest.

• Provide robust constraint support beyond the traditional

FS, SS, FF, SF constraints found in traditional project
management tools.

The result of working directly with many of the best schedulers
has been the development of these powerful capabilities and a
solution that produces a schedule that is significantly better than
those reached by previous methods.

TABLE OF CONTENTS

1. INTRODUCTION ... 1	
2. HEURISTICS: IMPORTANCE OF 2	
3. BOEING AIRPLANE PRODUCTION SCHEDULING ... 3	
4. GENERAL DYNAMICS ELECTRIC BOAT 4	
5. PROTOTYPE VEHICLE TESTING 5	
6. MORTGAGE AUDIT SCHEDULING 5	
7. SATELLITE COMMUNICATIONS WITH GROUND
STATION SCHEDULING ... 6	
6. BENEFITS TO NASA ... 7	
7. CONCLUSIONS ... 8	
REFERENCES ... 9	
BIOGRAPHY ... 9	

1. INTRODUCTION
Scheduling, at its most basic, is the process of assigning tasks
to resources over time, with the goal of optimizing the result
according to one or more objectives [1]. Scheduling is
heavily used in construction, manufacturing, defense, and

service industries to minimize the time and cost associated
with the completion or production of small to large, simple to
complex projects. The Aurora scheduling framework is one
example of a general-purpose scheduler that has been
successfully applied to a variety of domains [2], [3]. Aurora
combines graph analysis techniques with heuristic scheduling
techniques to quickly produce an effective schedule based on

a defined set of tasks and constraints. This typically includes
the following:

• Temporal: Tasks must be scheduled between the
project start and end dates; each task has duration
and an optional start date and an optional end date.

• Calendar: Tasks can only be scheduled during
working shifts; tasks cannot be scheduled on
holidays.

• Ordering: Tasks can optionally be assigned to
follow either immediately after/before another task

 2

or sometime after/before another task; optionally
with a specific offset time in between.

• Resource: Each task can require that resources be
available for the task to be scheduled.

The framework distills the various operations involved in
creating a schedule that respects all of these constraints into
reconfigurable modules that can be exchanged, substituted,
adapted, and extended. This framework is used as a

foundation to create domain-specific scheduling tools that
respect the constraints specific to domains. Additionally,
heuristics are tuned on a domain-specific basis to ensure a
high-quality schedule for a given domain.

The scheduling framework consists of two primary
components: the engine and the user interface. Both
components may be customized to create a domain-specific
scheduling tool.

This paper describes lessons learned from working on some
of the world’s most complex scheduling challenges and
working with some of the world’s most knowledgeable
human schedulers.

2. HEURISTICS: IMPORTANCE OF
Scheduling is an NP-complete problem, that is the size of the
solution space grows exponential time and therefore
problems of any reasonable size cannot be solved simply
mathematically. Most ‘solutions’ such as resource leveling
greatly simplify the problem and thus result in far suboptimal
results. Stottler Henke has employed a strategy that includes

leveraging scheduling heuristics learned from many of the
world’s best human schedulers in order to solve complex
scheduling challenges in reasonable amounts of time.

Consider the following extremely simple example (which is
therefore easier to use to illustrate this point) where:

• three activities, called Activity 1, 2, and 3, from
three different orders are all competing for time on
similar machines in a particular work center.

• The priority is highest (or the due date is soonest)
for Activity 1 and lowest for Activity 3.

• Two different machines exist, A which is expensive
and precise and B which costs less and has higher
throughput.

• Machine A is required for Activity 3, but it can also
process activities 1 and 2, though it is not efficient
to do so.

Let’s look at a solution from a simple scheduler: Activity 1
is chosen first for assignment, since it has the highest
priority, and it so happens that at the moment Activity 1 can
begin, only Machine A is available, so Machine A is

assigned to Activity 1. Activity 2 is assigned to Machine B,
which has become available soon after Machine A. Activity
2 is soon completed, owing to Machine B’s fast production
rate. When Activity 3 is finally examined, its required
machine, Machine A, is busy and, worse, busy on an activity
that it wasn’t essential for. Meanwhile Machine B is idle.

Obviously, this is a suboptimal solution since a different
assignment would have prevented Machine B from being

idle and prevented expensive Machine A from being
assigned to a task that didn’t need it. Of course, a more
complex scheduler could “look ahead” to see if the cheaper
machine might be soon available, but for any such

workaround there’s a corresponding example that still causes
problems. And each of these rules has to be anticipated and
created by the scheduling system software developer.

Perhaps a scheduling system could be written that
systematically tried every possible solution and selected the
best, and therefore optimal, one. In the example above, the
number of possible solutions is 2 choices for Activity 1 times
2 choices for Activity 2 times 2 choices for Activity 3 = only
4 possible solutions. However, consider an activity list

consisting of only 30 simple resource assignments where (for
simplicity's sake) only one resource is required for each
activity. Assume on average 4 meaningfully distinct choices
(e.g. different machines) for each activity. This means that
there are 30 distinct decisions with 4 choices each so the
number of solutions is 4 x 4 x 4 x 4 =

430 = over a million trillion possible solutions,

which are clearly impractical to systematically search. And
this calculation was based on an extreme over simplification.
The more realistic, complicated planning problem is much
more difficult. This is the essence of NP-Complete problems.
The widely recognized and clearly applicable NP-

Completeness Theorem states that to guarantee an optimal
solution to an NP-Complete problem requires exponential
time (e.g. MN where M is the average number of options per
choice and N is the number choices) which is clearly
impractical in this case, since N is typically in the thousands.
An optimal solution can simply not be guaranteed for this
application.

Therefore, to determine near-optimal solutions in reasonable
timeframes requires good heuristics learned from actual

human experts on a large number of situations. We have
developed both general heuristics for producing good
solutions and the techniques and architecture to incorporate
domain specific knowledge and heuristics into the planning
system. Our expertise includes substantial experience
eliciting the required knowledge and cognitive processes
from expert planners, then mimicking those processes in

software to create advanced intelligent planning and
scheduling systems. To wit, Aurora mimics the decision-
making process of expert schedulers.

NASA Heuristics

Stottler Henke has been working with NASA, and especially
Kennedy Space Center (KSC), to improve the efficiency of
its projects and other scheduling challenges since the 1990s.
One of the projects completed in 1994, developed techniques
for long-term Space Shuttle processing planning for NASA’s

KSC. Experienced mission planners were studied to identify
relevant planning techniques, this knowledge was captured
mostly as a set of scheduling heuristics. A full-scale
Automated Manifest Planner tool (AMP) was in daily use
from the mid 1990s through the end of the Space Shuttle era
to maintain manifests and perform advanced “what-if”

 3

studies. This project was the genesis of Stottler Henke’s
intelligent approach to planning and scheduling.

During the 1990s Stottler Henke enjoyed further success with
various other scheduling-related projects, many for NASA.
After building independent scheduling solutions, it was
decided that it would be wise to re-architect our scheduling

software so that it would be easy to modify in the future. That
is how Aurora came to be. The Aurora architecture [4] was
created in such a way that every decision point that could be
changed in a scheduling system is very easy to modify. A
major component of this is the ability to inject new heuristics
and control which heuristics are employed for different
implementations of Aurora.

Flexible / Reconfigurable Architecture

To achieve maximum flexibility, we designed Aurora to have

a number of components that could be plugged in and
matched to gain varied results. The scheduling system
permits arbitrary flexibility by allowing a developer to
specify what code libraries to use for different parts of
scheduling. Each of the pluggable components must extend
the corresponding general base class that defines the entry-
point methods. This allows the objects that are integral to

Aurora to interact with them successfully. The libraries may
make use of any of the Aurora objects (such as activities and
resources) that pass through the interface. These objects
provide support for additional attribute caching, permitting
domains to make use of custom properties in the scheduling
heuristics. The primary pluggable components include a
preprocessor; a scheduling queue prioritizer; the actual

scheduler, which usually applies several scheduling methods;
a conflict solution manager; and a postprocessor. See Figure
1 for a more detailed breakdown of configurable operations.

From this reconfigurable Aurora architecture, we have been
able to build quite varied complex and successful scheduling
systems; accomplishments range from scheduling the
downlinks of US Air Force satellites [5] & scheduling related
to space debris tracking [6], to scheduling medical residents
during their education at Harvard’s Medical School, to
scheduling the final assembly of the Boeing 787 jetliner and

various other aircraft for Boeing as well as similar operations
for Bombardier and Learjet, to combining intelligent
scheduling with Critical Chain Project Management
(CCPM), to scheduling the manufacturing facilities of
pharmaceutical production.

Further details regarding some of these accomplishments and
lessons learned from the experience are provided in the
sections below.

Figure 1. Aurora’s reconfigurable scheduling system
process breakdown.

3. BOEING AIRPLANE PRODUCTION SCHEDULING
A huge increase in Aurora capabilities occurred and a
corresponding amount of lessons were learned due to the
work we have done with The Boeing Company since about
2005 until the present. Boeing was looking to replace their

own internally developed scheduling tool and provide
capabilities such as Critical Chain when they discovered
Aurora. The initial focus was to provide intelligent
scheduling and Critical Chain software to help Boeing
manage certain aspects of the process of building the Boeing
787 Dreamliner™ commercial airliner. Boeing tested Aurora
against their tool and found the results were almost the same,

even though Aurora had not been tuned to their application
and their internal tool had been optimized over two decades
specifically for the aircraft production. After working with
Boeing, Aurora now consistently outperforms their legacy
tool.

The most visible enhancement and lesson learned was the
implementation of Critical Chain Project Management and
the lessons learned on how and when to leverage the benefits
of the critical chain methodology. Due to the complex project

management and scheduling challenges of Boeing, no
currently available critical chain software could meet their
needs, so the resulting product Aurora-CCPM is now the
world’s most capable critical chain software solution.

After continuing to work with Boeing since 2005, here is a
subset of enhancements that have proven valuable in
providing greater transparency and increased throughput to
Boeing and various other clients.

• Ability to handle multi-projects of huge size and
complexity (Boeing uses Aurora to run projects that
contain over 10,000 activities! Aurora has run
portfolios with 150,000 activities, but the theoretical
maximum is much larger.)

 4

• Ability to do carry out forward, backward, and
mixed mode scheduling.

• Intelligent scheduling that can determine shorter
critical chains.

• Ability to leverage knowledge about resource
constrained task placement during execution. Due to
execution time differences in how tasks have

actually executed the resources may become
available for a task that is shown later but actually
could be done now and otherwise these resources
would lie idle. Aurora-CCPM could determine in
real time that it is best to complete this task now.

• Ability to take variability of tasks in a chain into
account in buffer consumption. That is, if a chain

consists of a series of low variability tasks at the
beginning then a few high variability tasks at the end
of the chain, standard buffer consumption reports
could give an overly optimistic view of the situation.

• Sophisticated constraints beyond human capabilities
— ability to handle physical space constraints,
including considering the creation and elimination
of the space during the project.

• Ability to run how the client wants to run. It can run
as a standalone application under Windows, Linux
and as a web-based application.

• Ability to easily integrate with other company
systems / databases.

• Ability to handle short-duration tasks, and update
buffer reports on any timeframe (E.g., once every
hour).

• Ability to model human resources with details
beyond just an occupation, such as occupation plus
a set of specializations and/or certifications.

• Explanation of reasoning. Aurora includes the
rationale for each task on why it was
schedule where it was scheduled. Therefore, it is
easy to determine what changes could be made
for a task to occur earlier.

An example of the need for to model human resources with
details beyond just an occupation, such as occupation plus a
set of specializations and/or certifications, includes
specializations that certain welders have. For example, there
may be a resource set of welders, all of whom can perform
Shielded Metal Arc Welding, then there may be subsets that

can also perform Gas Tungsten Arc Welding, there can also
be different levels such as apprentice or master. So one
welder may fall into many different subsets and to make a
different resource set by hand for each and maintain this is
overly complicated. It is better to have a dataset with the
welders and the skills and let Aurora manage the details and
allocate the welders optimally.

One of the unique and powerful capabilities in Aurora is the
explanation facility. Aurora provides an explanation
capability that shows the rationale for why every task is

scheduled where it is, that is, each task includes the reasons
why it is scheduled at its current time. This is a powerful
capability that provides transparency into why the schedule
is scheduled the way it is and builds trust by the users. Figure

2 shows an example of an explanation. What is usually seen
is that the start date may be affected by a start-no-earlier than
constraint, then the start date may be later due to one or more
predecessors not completing until later, and then finally the

actual scheduled start date may be further delayed due to a
resource not becoming available until after all the
predecessors have completed.

Figure 2. Automatically generated explanation

4. GENERAL DYNAMICS ELECTRIC BOAT
Aurora is being leveraged by General Dynamics Electric

Boat (EB) for the scheduling of various aspects of submarine
construction, to increase the speed of production. To help
maximize efficiency, customizations have been provided to
further benefit EB and to provide greater efficiency to the
users of Aurora, that is, the user interface has been adapted to
make the EB specific use cases even more streamlined.

EB has some of the most sophisticated fabrication
capabilities in the world, however, to increase efficiency
sometimes it is best to outsource/farm out less specialized

work. Aurora already provided many of the graphical and
tabular reports to help the user determine what is best to
outsource. Aurora has been modified to provide a convenient
interface for visualizing what tasks can be outsourced and
providing a one-click option to outsource a task that adjusts
the actual model appropriately, see Figure 3.

Figure 3. Farmout /Outsource interface

Aurora for EB has been enhanced to provide the ability to
handle less than perfect data sources, such as having an
override for the status of work-in-progress tasks, so

schedulers can easily override data from external sources. For
example, the latest data may include information about open
tasks that actually have zero (0) duration remaining. This
may occur if an operation which has an initial estimate of 10
hours, experiences unforeseen circumstances that cause the
operation to actually need more than 10 hours to complete.
However, the current external system that data is read from

simple calculates the remaining duration from the original
duration minus the hours worked. So once the hours exceed

 5

the original duration Aurora will see the remaining duration
as zero (0). Therefore, a dialog is provided, see Figure 4, that
shows all the open operations and their currently calculated
remaining durations. The user has the option to change any

of the remaining durations or to mark an operation complete.
This information can also be saved out separately and later
read back in if desired.

Figure 4. Remaining duration override interface

Overall EB mostly needed enhancements related to ways to
increase the efficiency of the user experience. That is, certain
data that is read into Aurora from external systems is not
updated in a way that Aurora needs for various reasons. For

example, when an operation is outsourced in the external
system it means the actually outsource process steps will be
commenced. This is not appropriate for situations where
long-term scheduling is occurring, and outsourcing is used to
meet deadlines that may occur months or years in the future.
The ability to easily outsource items to test long-term
schedules, but it is not desired to start the outsourcing process

since more changes may occur during the interim and the
actual outsourcing specifics may change.

5. PROTOTYPE VEHICLE TESTING
Prototype vehicle testing is an essential part of building
models of cars and trucks in the automotive industry. This
can involve carrying out hundreds of tests on expensive hand-
built prototype vehicles, as there is no assembly line for these
future models yet. There are also different configurations of

the prototype vehicles; for example, the new vehicle may be
available in a 2-wheel drive and 4-wheel drive configuration,
a configuration with a sunroof and one without, etc. Each test
may have a minimum configuration and a few other
configurations it can use. As part of creating a schedule, the
primary objectives in this domain are to minimize the number
of prototype vehicles required and to complete the project in

the allotted time window. There is a build rate for creating
the vehicles, so part of optimizing the process is to select
which vehicle configuration should be built each time a
vehicle is built. This domain also includes additional
constraints: Vehicle Build Dates: Vehicles are resources that
are not available for tests until the date they are created;
creation dates follow a given calendar; again Aurora’s goal is

to optimally assign the best vehicle configuration to each
creation date such that the objective functions are minimized;
Exclusive: Tests indicated as exclusive must be the first test
on the selected vehicle; and Destructive: Tests indicated as
destructive must be the last test on the selected vehicle. While
most of the scheduling engine components were customized
[7], the Prioritizer contained the bulk of the domain-specific

heuristics. In general, if “difficult” tasks are scheduled earlier
in the process, the schedule tends to avoid subsequent

conflicts that would be difficult to repair. Several heuristics
were developed to identify these difficult tasks— those tasks
that are exclusive, are significantly longer in duration, are
destructive, have significant follow-on work, or have fewer

options with respect to resources and/or time windows. In the
end, the customized system created a testing schedule that
met all of the constraints, making use of over 100 vehicles
and over 30 vehicle configurations to complete over 4,000
days of testing. A conservative estimate suggests the schedule
includes a 6% reduction in the number of vehicles over the
previous scheduling method, resulting in cost savings in the

millions of dollars for each new vehicle model. Figure 5
illustrates a relatively simple test schedule, note the prototype
vehicles come online over time (the purple area before a
test can start).

Figure 5. Vehicle testing schedule with build pitch

6. MORTGAGE AUDIT SCHEDULING
Mortgage auditing is routinely performed on lenders to
guarantee that mortgage approvals are appropriate and
unbiased. A large mortgage auditing company may perform
thousands of audits for dozens of clients in a given week.

Each audit goes through multiple synchronized steps, and all
steps must be completed by a hard deadline. There are a
number of constraints on how those audits should be
allocated to auditors to create a schedule: Training: There
are a wide variety of mortgage types, and audits must be
assigned to personnel with the correct training; Consistency:
Assignment of a consistent, minimal subset of auditors is

advantageous; and Thoroughness: At least two auditors are
required.

Because some of these constraints are soft (e.g., using
consistent auditors for a client, or preferring a small number
of auditors), while others are hard (e.g., training requirements
or deadline satisfaction), a flexible scheduling strategy is
required. Backtracking once tasks are formally scheduled is
slow, so instead the Preprocessor has been modified to
construct a less precise but more nimble projection. The

Preprocessor models a queue for each auditor, with logic to
determine on which day a given audit will be completed. By
populating this queue in due-date order, starting with the
most preferred formulation but shifting work based on a
variety of heuristics, Aurora is able to quickly find a solution
that maximizes the soft constraint satisfaction while
satisfying the hard constraints. The customized system allows

automated scheduling of thousands of audits, a process that
used to require a human scheduler to devote a person-day to

 6

each week. Because it is automated, the system can update
much more frequently to support rapid adaptation to
changing circumstances.

Lessons learned include that the resource allocation can be
very complex and may have many satisfactory solutions,
however, to optimize the situation both hard and soft

constraints need to be considered intelligently. Figure 6
shows one of the custom interfaces developed to show the
human auditor schedules; the team assignment display that
dynamically shows the auditors who are considered
acceptable for the client.

Figure 6. Team assignment display

7. SATELLITE COMMUNICATIONS WITH GROUND
STATION SCHEDULING

The Air Force commands and controls a variety of satellites
through a global network of antennas and ground support
equipment. Each constellation of satellites (e.g. the GPS
satellites) is commanded from a separate satellite operations

center. Each constellation’s controlling organization makes
satellite communication support requests for the antennas and
other ground support equipment (including limited
bandwidth for each multi-antenna site as a whole)
independently of the others to a central scheduling
organization which must deconflict the competing requests.
The most obvious constraint on this process is that there must

be line-of-sight between the antenna and the satellite. In
general, the scheduling organization tries to meet the original
requests as closely as possible. In a typical single day, there
are about 600 or more support requests, and usually, more
than half are in conflict with each other. Many of the conflicts
are seemingly unsolvable, e.g. if there is only one antenna at
a site and two requests for that antenna at the same time, the

conflict is seemingly unsolvable. Yet this organization
produces a conflict-free schedule daily, while meeting all
requests. Meeting all (or as many as possible) support
requests as closely as possible is the main objective. The
solution is a two-step process. The first step applies the
bottleneck avoidance algorithm [8] to meet as many of the
requests as possible with the existing resources, without

relaxing any constraints. The bottleneck avoidance algorithm
involves the Preprocessor to derive a global perspective by
determining which resources are bottlenecks (most overly
contended-for) and at which times. This explained more fully
in [9] but very briefly, this involves “spreading” each request
pseudo-probabilistically across all resources that it might use.
(E.g. if a support request needs one of two antennas it is

pseudo allocated 50% to each one and similarly the request’s
needed minutes are spread across the full possible time
window). The Prioritizer uses this information to put requests
that need the most overly-contended-for resources at the most

overly contended for times at the front of the queue to be
scheduled first. The ScheduleMethod uses the bottleneck
information to make resource and time window selections to
avoid the worst bottlenecks by making the assignment which
most reduces the bottleneck problem. That is, in making this
local decision it considers the global perspective. Bottleneck
avoidance solves about half of the conflicts, but the

remaining ones are typically unsolvable without relaxing
some aspect of the requests. The second step of the process
iteratively examines each remaining conflict and makes
suggested changes to one or more support requests. For
example, a specific support may request 10 minutes of
preparation time before the support will actually commence.
The scheduler may know that this constellation’s manager

will accept 5 minutes, if there is no other choice. The
suggested change to that manager is to reduce his preparation
time to 5 minutes. Other changes relate to moving the support
out of its requested time window or to a different site or
replacing ground support equipment with alternatives or even
dropping certain hardware requirements altogether. Some of
these changes are more suggestable if the other satellite in the

conflict is from the same constellation. The scheduler
annotates the schedule with symbols and notes for the
suggested change, appending his initials. With dozens of
constellations, and each constellation having dozens of these
rules of thumb, there were hundreds of undocumented rules
that the expert schedulers used to resolve effectively all the
remaining conflicts. Within each set of rules, there were

preferences for which to use before others. Combinations and
domino effects (e.g. solving a conflict by creating another,
then solving that one) had to also be considered. This
knowledge was elicited and implemented in constellation-
specific, user-editable rule bases which were incorporated
into Aurora’s Postprocessor. The application of each rule also
made the necessary note annotations and appended the

software’s initials. Over a thirty-year period, dozens of
researchers have worked on this specific problem and the Air
Force had previously invested tens of millions of dollars to
develop various solutions, but all of them were considered
operationally unacceptable (primarily because the relaxation
rules had never been elicited before). In 2017, this application
of Aurora passed high-stakes testing so that it could be

operationally implemented, and it demonstrated a 20-fold
reduction in the time required to deconflict a 24-hour
schedule.

The major lesson here is that success and failure may be
simply due to the willingness to listen and learn from the
actual experts who currently perform the scheduling. Here
was a case where it was impossible to get a usable solution
using the specifications of the problem. Only by learning
from experts could one learn how to go from a highly

conflicted schedule to a completely satisfactory schedule.
Figure 7 illustrates the Satellite/ground station scheduling
interface developed to meet the Air Force’s desire to retain
the interface used in their legacy system.

 7

Figure 7. MIDAS interface bottom center & comparison
with more standard interface in background

6. BENEFITS TO NASA
All of NASA has access to the intelligent project
management and scheduling of Aurora. As has been
illustrated much of Aurora’s capabilities have evolved
directly from working with NASA, some from other
implementations and many result from both NASA

collaboration in conjunction with other implementations.
Hazardous Constraints are a good example of evolving from
multiple sources.

Aurora already had the concept of both concurrent constraints
and non-concurrent constraints. Figure 8 shows non-
concurrent constraint for tasks A, B and Figure 9 shows
concurrent constraints for task B, A, & C.

Figure 8. Non-concurrent tasks

Figure 9. Concurrent tasks

The Aurora-KSC [10] implementation added the capability
to mark activities as being ‘hazardous’ to other activities.
The result of such a hazardous marking means that Aurora

will never schedule the hazardous activities to occur
simultaneously with any of the activities it is hazardous to.
Thus, the hazardous constraint is a variation of the non-
concurrent constraint. Graphical enhancements now allow
for hazard activities to be denoted in the PERT Chart, with
special arrows emanating from the activity causing the

hazard and pointing to the activities affected. Figure 10
illustrates hazardous constraints.

Figure 10. Hazardous constraints shown with red arrows

The use of Aurora for scheduling has typically meant that
10% to 40% more tasks can be accomplished with the same
resources in the same amount of time (or the same tasks
accomplished in 10% to 40% less time) when compared with
other scheduling methods.

One real-world example considers the analysis of a refinery
turnaround project. Note that no Microsoft Project results are
provided because the MS Project software could not
successfully resource-level this project.

The project network consists of over 2,500 activities. A view
of the network is shown in Figure 11. Note the red lines link

tasks with Finish to Start constraints, this network also has
some start-to-start constraints that are shown with yellow
lines, some may be seen in the upper-left portion of the
network shown in Figure 11.

Figure. 11. Turnaround Project Network

The results of the analyses are shown in Figure 12.

 8

Figure 12. Scheduling Results – Refinery Project

The difference in absolute terms is over 10 days. There are a
few ways to compare these results; the simplest is to simply
compare overall durations, using Aurora’s intelligent
scheduling results as the basis: Primavera P6 resource-

leveling is over 19% longer than intelligent scheduling.
Using the Primavera P6 resource-leveling as the bases:
Intelligent scheduling is over 16% shorter than Primavera
P6 resource-leveling.

Another valuable perspective lies in comparing the resource-
constrained result with the Critical Path, that is, the situation
assuming unlimited resources. Why is this perspective

valuable? Because the Critical Path is the best-case scenario,
and the valid schedule when considering resources must
always be longer than the Critical Path, so the length longer
than the Critical Path is the only portion of the total project
duration that the resource-leveling or intelligent scheduling
can affect.

The Critical Path for the refinery turnaround project is 46
days.

Primavera P6 resource-leveling results longer than
Critical Path: 21.125 days
Percent longer than Critical Path 45.9 %

Aurora results longer than Critical Path: 10.27 days
Percent longer than Critical Path 22 %

The percent difference between days more than Critical Path
for Primavera P6 versus Aurora is

 over 100%.

These results demonstrate the significant benefit of
leveraging Aurora’s intelligent scheduling. Recall that
everything besides the method for scheduling is the same in

both cases. Leveraging Aurora saved over 10.5 days, and all
of the associated costs with all the resources that are needed,
as well as the lost revenue from the refinery being
unavailable.

Of course, the cost savings and other benefits of leveraging
Aurora are huge for the initial plan, but even more potential
benefit comes in the execution phase of the project, where

unexpected circumstances need to be dealt with. By

leveraging intelligent scheduling, updating the schedule can
be done quickly, and the updated schedule will be shorter
than if one used resource-leveling only. Therefore, every
time a schedule update is performed, the overall benefit of

leveraging Aurora’s intelligent scheduling increases.

7. CONCLUSIONS
Stottler Henke working in conjunction with NASA and a
myriad of diverse other organizations has been able to create
an intelligent project management and scheduling solution

that provides a general intelligent project management and
scheduling solution that is benefiting parts of NASA,
including KSC, and that can be leveraged by even more
projects and scheduling challenges throughout NASA.

For example, the entire NASA community can leverage
Aurora for its myriad benefits, a short list includes;

• Large multi-project support, able to handle
100,000+ tasks per project

• Multiple-pass intelligent resource-constrained
scheduling, resulting in shorter projects and greater
transparency.

• Mixed-mode scheduling, supporting both forward
and backward scheduling, available on a task-by-
task basis.

• Schedule explanations for each task providing
greater understanding and transparency.

• Supporting import from and export to Primavera.

• Scheduling and re-scheduling occur wall clock time
fast.

• Support for various constraint types, which allow
for the correct modeling of NASA realities.

For NASA and other applications to date, including the 30K+
models scheduled by General Dynamics Electric Boat the
actual scheduling itself can be completed in less than 5
minutes and the resulting schedule is significantly better than

those arrived at by previous scheduling methods. The so now
the user has the ability to model their situation to the level of
detail required, can find optimal schedules, and finally
perform the scheduling in such a short amount of time that
various other what-if scenarios can be performed as desired.

 9

REFERENCES
[1] M. L. Pinedo, Scheduling. Cham: Springer International

Publishing, 2016.

[2] A. Kalton, “Applying an Intelligent Reconfigurable
Scheduling System to Large-Scale Production

Scheduling,” presented at the International Conference on
Automated Planning & Scheduling (ICAPS) 2006,
Ambleside, The English Lake District, U.K., 2006.

[3] R. Richards, “Critical Chain: Short-Duration Tasks &
Intelligent Scheduling in e.g., Medical, Manufacturing &
Maintenance,” presented at the 2010 Continuous Process
Improvement (CPI) Symposium, Cal State University,
Channel Islands, 2010.

[4] Kalton, A., R. Richards. (2008) Advanced Scheduling
Technology for Shorter Resource Constrained Project
Durations. AACE International’s 52nd Annual Meeting &

ICEC’s 6th World Congress on Cost Engineering, Project
Management and Quantity Surveying. Toronto, Ontario,
Canada. June 29 – July 2, 2008.

[5] Mohammed, J., Stottler, R., “Rapid Scheduling of Multi-
tracking Sensors for a Responsive Satellite Surveillance
Network,” Proceedings of the Infotech@Aerospace 2010
Conference, Vol. 1, AIAA, Reston, VA, 2010.

[6] Stottler, R., Thompson, R., “Globally Optimized
Scheduling for Space Object Tracking,” Proceedings of the
Infotech@Aerospace 2011 Conference, Vol. 1, AIAA,
Reston, VA, 2011.

[7] Ludwig, J., A. Kalton, R. Richards, B. Bautsch, C.
Markusic, and C. Jones, “Deploying a Schedule
Optimization Tool for Vehicle Testing,” in Proceedings of

the 10th Scheduling and Planning Applications woRKshop
(SPARK), 2016, pp. 44–51.

[8] D. Stottler and K. Mahan, “Automatic, Rapid Replanning

of Satellite Operations for Space Situational Awareness
(SSA),” presented at the Advanced Maui Optical and
Space Surveillance Technologies Conference, 2015.

[9] K. Mahan, R. Stottler, and R. Jensen, “Bottleneck
Avoidance Techniques for Automated Satellite
Communication Scheduling,” in Infotech@Aerospace
2011, American Institute of Aeronautics and Astronautics.

[10] Xu, S., R. Stottler, R. Richards, Intelligent Scheduling at
NASA: Application to Ground Operations at Kennedy
Space Center. Proceedings of IEEE Aerospace Conference
2017. Big Sky, MT, March 4-11, 2017.

BIOGRAPHY
Robert Richards received a Ph.D. in Mechanical

Engineering from Stanford University.
Dr. Richards is managing and has
managed multiple projects for both
commercial and government clients,
including various intelligent scheduling.
Dr. Richards is the Principal Scientist
and Manager of Stottler Henke’s Pfizer
project for scheduling pharmaceutical
packaging plants, the end product is

Aurora-ProPlan. Aurora-ProPlan is being rolled out to all of
Pfizer’s packaging plants throughout the world. Dr. Richards
also lead the project for adapting Aurora to optimize the
vehicle testing process by selecting the best vehicle
configurations to minimize the vehicle count and overall
schedule duration, the result is called Aurora-VT. Dr.
Richards has also worked on and continues to work on
various projects spanning a wide range of research and
application area interests, including: training system
development; applying automation and artificial intelligence
techniques; and decision support tool development for life-
critical situations. Dr. Richards has publications in all of
these domains

Richard Stottler co-founded Stottler
Henke in 1988 as a software company
dedicated to providing practical
solutions to difficult problems by
skillfully drawing upon a large
repertoire of artificial intelligence
technologies. Under his leadership,

Stottler Henke has grown steadily and profitably into a 40-
person research and software development company with
distinctive expertise in intelligent tutoring systems,
intelligent simulation, automated planning and scheduling,
and intelligent knowledge management. Dick provides
technical leadership in the design and development of
intelligent tutoring systems, intelligent planning and
scheduling systems, and automated design systems. He
combines a strong applied research record in artificial
intelligence with practical experience in rapid and efficient
knowledge engineering. He also led the development of
intelligent planning systems for NASA space shuttle
missions and aircraft assembly and automated scheduling
for the International Space Station. Dick has written or
presented dozens of papers and articles for publications
such as the proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). He received
his BS in engineering from Cornell University and his MS in
computer science (artificial intelligence) from Stanford
University.

